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Lyapunov functions are used to investigate the stability of processes described by a system of linear 

partial differential equations with retarded argument (for example: magnetohydrodynamic processes, 

elastic vibrations in aircraft, etc.). Some equations of the system may not involve time derivatives (for 

example, the equation of continuity in incompressible fluid flow, and the equation for the magnetic 

induction vector in the theory of electromagnetic phenomena). Such equations also arise when the order 

of a partial differential equation is reduced by introducing new notation for the space derivatives. A 

method is developed for investigating the stability of processes described by a system of this kind, some 

of whose equations do not contain time derivatives. Two constructions of the Lyapunov functions, as 

different integral quadratic forms, are proposed. Sufficient conditions for stability, in the form of 

inequalities relating the coefficients of the system, are established. As an example, the stability of the 

vibrations of a stretched string in a viscoelastic medium due to a distributed control force is considered. 

1. STATEMENT OF THE PROBLEM 

CONSIDER a perturbed process with distributed parameters, described by the following system of 
partial differential equations with a retarded argument 

2 = A(x) i!!t a! 
ax + B(x) ax + AoCdcp + Bo(x>v + Q(x)% (1.1) 

(1.2) 

t E Ito, -1, x E (0, l), cp = cp(x, t), cpz = cp(x, t - z) 

where cp and cpl are n-vectors of phase functions, v = ~(x, t) is the m-vector of phase functions 
whose time derivative does not occur in system (l.l), (1.2), A(x), A,,(x), B(x), B,,(x), C(x), 

COW W), O&) and Q< x are matrices whose elements are absolutely continuous functions, ) 
z is the delay of the argument t. 

We assume that the initial values of the vector-valued function cp(x, r) he in the space LJ[O, 
l] x [r,, - z, t,]); homogeneous boundary conditions are imposed at the endpoints x = 0, x = 1 of 
the interval (0,l) 

%cp(o~o+P”v(o,~)=o, a,cp(l,t)+~,~(l,t)=O (1.3) 
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where c& (i = 0,l) are matrices whose elements are continuous bounded functions of time. 
We wish to solve system (l.l)-(1.3) in the class of absolutely continuous functions of X. 
We define a measure of the deviation of the perturbed process from the unperturbed process 

cp = w = 0 at an arbitrary 

and a measure p,[cp] = 0, 

time t > to 

p[cp(~J)l= / ~T~wPww 

constraining the initial perturbations. 

(1.4 

Definition 1. The measure p[cpl is said to be continuous at time t =c, with respect to the 
measure p,[cp] at p,[cp]= 0, if, for any number e > 0, a number 6 =6(e) > 0 exists such that 
p[cp] c E whenever p,[cp]c 6 and t z to. 

Henceforth we shall assume that p[cp] is continuous with respect to p,[cp] at t =tO and 
p,[cp] = 0. For example, this condition holds for the following initial measures 

(1.5) 

PO2 [(PI = PW~JfJ )I + 7 p[cp(., slds 
to-l 

which we will indeed use in examining certain specific problems. 

(1.6) 

Definition 2. The unperturbed process cp = w = 0 is said to be stable with respect to the two 
measures p[cp] and p,[cp] if, for any preassigned number ~0, one can find a number 6 = S(E) > 0 
such that, for all admissible initial distributions satisfying the condition p,[cp] c 6, it is true at any 
time tafO that pIcp]ce. 

Modification of the method of Lyapunov functions will yield sufficient conditions for a 
solution cp = w = 0 of system (l.l)-(1.3) to be stable with respect to pIq] and p&p]. For the case 
of no delay, i.e. Q(X) = 0, sufficient conditions for the trivial solution of system (l.l)-(1.3) to be 
stable with respect to p[cp] have already been established [l]. 

The special feature of this system is that Eq. (1.2) does not involve derivatives with respect to t . 
This means that one cannot directly evaluate the derivative of the Lyapunov function with 
respect to time along trajectories of the process described by the system. We will propose a 
procedure somewhat similar to the method of Lagrange multipliers in variational problems. 
The method will be described using various forms of Lyapunov functions. 

2. FIRST METHOD OFCONSTRUCTING LYAPUNOV FUNCTIONS 

Here we will use an idea developed in [2] to investigate the stability of systems with lumped 
parameters and delay, which was extended in [3] to delay systems with distributed parameters. 

To solve the problem, we propose to use the function 

where U(X) is a matrix whose elements are absolutely continuous functions. The derivative dV/dt 
along trajectories of Eq. (1.1) is 

av aWT T +(PTw--+- B ucp + (P~uB~w + I~~B,Tu(~ + 2qTuQcp, dx 
ax ax 

(2.2) 
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To take Eq. (1.2) into consideration, we add the following equality to expression (2.2) 

where PI = PI(x), Pz = P&x) are as yet arbitrary matrices whose elements are absolutely contin- 
uous functions. 

We integrate by parts, requiring the matrices 4, P2, v to satisfy the following conditions 

uA + P,C = (VA + PpTJT, PzD = (P2D)T 

d/&(P2D) = PzDo + (P2D& uB + P,D = (PZC)T 

d/dx(uB + P,D) = uBo + P,D,, + (P2C#, x E (0,l) 

[cp@A + PI+ + 2cpT(uB + PID)y + yfTP2Dyt] :, = 0 

Then 

(2.3) 

(2.4) 

where 

w = o(x) = d/dr(uA + P,C) - @A, + P,Co) - @A0 + PIC’,,)~ (2.5) 

Obviously, as the expression for dV/dt includes the bilinear form #uQcp,, the derivative will 
be a sign-definite form for any values of the vector cp,. We will therefore use the stability 
theorem [2,3] in which the fact that dV/ldt is sign-definite need be verified only for vectors cp, in 
some closed domain. 

It follows from the theorem that the solution (p=v ~0 of system (l.l)-(1.3) is stable with 
respect to the two measures picp] and p,,[<p] if: 

(a) v[cp] is continuous with respect to p,,[cp] at c = to and positive definite with respect to p[cp]; 
(b) dV/dt (2.4) is non-positive on the set of states such that v[cp(e, S)]S v[<p(, t)] or 

S E [f - 2, t], t 2 to. 

Suppose that the elements of the matrix u= u(x) are bounded functions. It then follows from 
the inequality 

that V[cpJ is continuous with respect to the measure p,,[cp] (where h_(x) is the maximum 
eigenvalue of U(X) at the point x E [0, l]), Note that for arbitrary functions cp(x, S) in the space 
ZJ[O, l]x[t, -7, to J) the function V[cp] is not continuous with respect to the measure p,[cp] (see 
the definition of continuity in [3]); in this section, therefore, stability of the trivial solution is 
considered relative to the measures p[cp] and p,,[cp]. 

If the quadratic form <p’u(x)cp is positive definite for all x E [0, l] and the elements of U(X) are 
continuous functions, then v[cp] will be positive definite with respect to p[cp]. That this is the 
case follows from the inequality 
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(2.7) 

(h&(x) is the minimum eigenvalue of u(x) at x E [0, 11). 
Thus, if the elements of u(x) are continuous and bounded functions and the quadratic form 

cp’u(x)cp is positive definite for all x E [0, l]), condition (a) of the stability condition will hold. 
Condition (b) of that theorem will hold if the corresponding form in the integrand in (2.5) 

satisfies the inequality 

cp70(x)cp - 2cpTwK?wcp, 3 0, x E LO, 11 (2.8) 

provided that 

Investigating the bilinear form cpruQcp, for a conditional extremum as a function of cp,, 
subject to condition (2.9), we obtain the estimate 

Icp’uQcp,l~ [cp’wp.cprN(~)cp)]~, N(x) = UQU-IQ% 

and inequality (2.8) takes the following form when (2.9) holds 

cp’o(x)cp - 2[&(x)cp rp%(x)cpl% 3 0, X E lo,11 (2.10) 

If the elements of Q are treated as parameters, it follows from-(2.10) that the stability domain 
is defined in the parameter space by the inequality 

(2.11) 

The maximum of the function depends only on the direction of the vector cp. This may be 
verified by expressing cp in the form cp = RE,, E,‘& = 1, where E, is the vector of direction cosines 
and R = (q?cp)*” is the length of the vector, and then substituting this expression into (2.11). 

Further, using the extremal properties of regular pencils of quadratic forms [4] 

we obtain the following estimate (which, though rather rough, is more convenient for practical 
purposes) 

(2.12) 

where 3L = A(X), h, = h,(x) are the maximum eigenvalues of the matrices w-‘(x)u(x) and 
o”(x)N(x) at the point x E [0, 11. 

Thus, using the Lyapunov function (2.1), we have established sufficient conditions for the 
trivial solution of system (l.l)-(1.3) to be stable-equalities (2.11) and (2.12). 

3. SECOND METHOD OF CONSTRUCTING LYAPUNOV FUNCTIONS 

In [3, 51 it was proposed not to use Lyapunov functions, but certain functionals with 
analogous properties. We will do this here to derive sufficient conditions for the trivial solution 
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of system (l.l)-(1.3) to be stable. 
Define a functional V, as the sum of two integral quadratic forms 

Let us evaluate the derivative dV,ldt along trajectories of system (l.l)-(1.3). Proceeding 
along the same lines as in Section 2, we obtain 

(3.2) 

where w = w(x) is defined by (2.5). 
By the method of Lyapunov functions [3], the trivial solution of system (l.l)-(1.3) will be 

asymptotically stable with respect to the two measures p(cpJ and p,[cp] if 
(a) V, is continuous with respect to the measure p,,[cp] at t =t, and positive definite with 

respect to p[<p]; 
(b) dV, ldt is negative definite. 
Suppose that the elements of the matrix U(X) and F(X) are bounded functions. Then it follows 

from the inequality 

that V, is continuous with respect to the measure p,[cp], where h”(n), hF(x) are the maximum 
eigenvalues of II and F at the point x E [0, 11. Suppose that the quadratic function cp’u(x)cp in the 
integrand is positive definite for all n E[O, l] and that the elements of II(X) are continuous 
functions; suppose, moreover, that the quadratic form cpTFcp is non-negative. Then it follows 
from inequality (2.7) that V, is positive definite with respect to p(cp]. We have thus established 
sufficient conditions for condition (a) to hold. 

Condition (b) will be satisfied if the quadratic function of 2n variables in the integrand in 
(3.2) is positive definite for all x E [0, 11, i.e. 

v~cp, cp,] = cpr(w - F)cp - 29ruQcp, + cp:Fcp, > 0, x E [O, 11 (3.3) 

For this inequality to be true, the following conditions must hold 

@(w - F)cp > 0, cp:W, > 0 (3.4) 

Define a block matrix 

By Sylvester’s criterion, a necessary and sufficient condition for the form VJcp, cp,] (3.3) to be 
positive definite is that the principal minors in the upper left corner of it4 be positive. This 
condition requires the evaluation of a large number of determinants. We therefore prefer to use 
here a recurrent criterion for the positive definiteness of quadratic forms [6]. 

By this criterion, the quadratic form V,[cp, cp,] will be positive definite if and only if 

i-l 
mji(x)- C “I;> 0 (i= 1,2,...,2n), x E ro,11 (3.5) 

k=l 

where the functions n,(x) (i = 1, 2, . . . , 2n;ja i) are evaluated by the following recurrence 
relations 
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i-l I 
H 

nii(X)=f mii(X)- C 
k=l 

1 i-l 

n&)=- 

+(x1 
mij(X)- C nfi(X)nkj(X) 

k=l 1 ; +(X)'O, j<i 

4. EXAMPLE 

Let us investigate the stability of the vibrations of a stretched string in a viscoelastic medium under the 
influence of a distributed controlling force 

&P&g = a29(xJ) 
at2 

acp(x,r) _bq(x t)+ v 
-----_-(J_ 

ax2 at ’ (4-l) 

XB (0.1). tat() 

rp(O,t)=cp(l,t)=O (4.2) 

where e&p(x, t)/&, bcp(x, t) are terms representing the action on the string of dissipative and conservative 
elastic forces, respectively. We shall assume that V = -cq(x, t-z), i.e. the control is achieved by feedback, 
where z is the delay of the signal on passing through the feedback loop. Here a and b are the dimensionless 
drag and coefficient of viscosity of the medium, respectively, and c is the dimensionless amplification factor 
of the feedback signal. 

Equation (4.1) also describes the torsional vibrations of an aircraft, but with different boundary 
conditions. 

Introducing new variables (pi = C&C, t), (pz = &q,&, (p3 = &p, /&-c and allowing for the integrability 
conditions &p, /at = &p2 /ax, (see [7]), we obtain the system 

acp,jat = (p2, acpz/at = acpgax - arp2 - hi, - ccpl(x, t - ‘~1 

ag3tat = awax, acp,/ax - ‘p3 = 0 

(4.3) 

equivalent to Eq. (4.1). Putting 

we write this system in the form (1.1) and (1.2), where B = B, = D = Do = 0. 
To establish sufficient conditions for the solution cp I 0 of systems (4.1), (4.2) to be stable, we first use the 

Lyapunov function (2.1), that is 

v=yi (u,,(P:+2u,2(P,(P2+(P~+(P:)dr (4.4) 
0 

where u,, > 0, u,, y are arbitrary constants. Let us evaluate the derivative dVldt along trajectories of Eqs 
(4.2) and (4.3) using the technique described above. For this example, the fist and last conditions of (2.3) 
become 

~A+P,C=(IIA+P,C)~, cpT(uA+PIC)ql ;=O (4.5) 

If we assume that P, =Il p1 0 u,, II, P2 =llOll, then, taking the boundary conditions (4.2) into 
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consideration, we conclude that conditions (4.5) are satisfied. By (2.5), the matrix w may be written in the 

form 

2hiZ b+m12 -%I PI 

o= b+q2-u,, 2(a-ut2) 0 

PI 0 2u12 

To simplify the calculations, we assume that hu, = a - II~, uI1 = b + uulz y = (b + l)/(B), pr = 0. Then the 

matrices in (2.1), (2.5) and (2.9) become 

w=adiag{l, 1, l/b}, q=u/(b+ 1) 

Substituting them into (2.11), we obtain the definition of the stability domain in the parameter space 

(a, b,c) 

(S is a sphere of unit radius). For given a and 6, the maximum of this function in the compact set S may be 

determined by numerical optimization methods. 
The boundaries of the stability domain in the (a, c) plane as defined by inequality (4.6), are shown in 

Fig. 1 for b = 3 and b = 1 (the solid curves). 
We will now determine the stability domain in the (a, c) plane by using the rougher estimate (2.12). this 

gives 

I= l+b+~+[(b+arl-l)2+492]K, 

4brl 

~ = c2 

’ 2qb2 

0 3 6 a 

FIG. 1. 



972 T.K.S IRAZETDINOV and S H.SH. KHUZYATOV 

Then, by (2.12), the stability domain is defined by the inequality 

c2 =s 
2b3q2 

l+b+~+[(b+~-1)2+4~2]“2 (4.7) 

The boundary of the stability domain defined by this inequality is shown in the figure by the dashed curve. 
Clearly, this inequality gives a somewhat narrower domain. Note, however, that as a + 00 both inequalities 
tend to the same limiting values c_ = bl(b+ 1). 

We now use the functional V, of (3.1) to determine the asymptotic stability domain with respect to 

measures p[cp] and p&p] in the parameter space (a, 6, c). the matrices u and F are constructed as follows: 

b+vu’ vu 0 
1 

vu=- va 1 2y 0, 

0 0 I 

F=~diaglfi,h.hl 

where y, u, f,, f,, f, are as yet arbitrary non-negative constants. 
Then, using the recurrent criterion (3.9, we obtain the following inequality defining the stable domain 

c2 4 max 4(1 -v)a2 fi(vb-fi) 
O=zVGl a2v2(1-v)+(vb-f,) (4.8) 

0% cvb 

Computations were carried out for this case for b = 1 and b = 3 and various values of a. the boundary of 

the stability domain is shown in the figure by the dash-dot curve. This domain is obviously larger than that 

determined by the previous method. 
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